Silicon Solar Cells: Structural Properties of Ag-Contacts/Si-Substrate
نویسندگان
چکیده
The screen-printed silver (Ag) thick-film is the most widely used front side contact in industrial crystalline silicon solar cells. The front contacts have the roles of efficiently contacting with the silicon (Si) and transporting the photogenerated current without adversely affecting the cell properties and without damaging the p-n junction. Although it is rapid, has low cost and is simplicity, high quality screen-printed silver contact is not easy to make due to the complicated composition in the silver paste. Commercially available silver pastes generally consist of silver powders, lead-glass frit powders and an organic vehicle system. The organic constituents of the silver paste are burned out at temperatures below 500°C. Ag particles, which are ~70-85wt% and can be different in shape and size distribution, show good conductivity and minor corrosive characteristics. The concentration of glass frit is usually less than 5wt %; however, the glass frit in the silver paste plays a critical role for achieving good quality contacts to high-doping emitters. The optimization of the glass frit constitution can help achieve adequate photovoltaic properties. The melting characteristics of the glass frit and also of the dissolved silver have significant influence on contact resistance and fill factors (FFs). Glass frit advances sintering of the silver particles, wets and merges the antireflection coating. Moreover, glass frit forms a glass layer between Si and Ag-bulk, and can further react with Si-bulk and forms pin-holes on the Si surface upon high temperature firing. This chapter first describes the Ag-bulk/Si contact structures of the crystalline silicon solar cells. Then, the influences of the Ag-contacts/Si-substrate on performance of the resulted solar cells are investigated. The objective of this chapter was to improve the understanding of front side contact formation by analyzing the Ag-bulk/Si contact structures resulting from different degrees of firing. The observed microscopic contact structure and the resulting solar-cell performance are combined to clarify the mechanism behind the hightemperature contact formation. Samples were fired either at a optimal temperature of ~780°C or at a temperature of over-fired for silver paste to study the effect of firing temperature. The melting characteristics of the glass frit determine the firing condition suitable for low contact resistance and high fill factors. In addition, it was found the post forming gas annealing can help overfired solar cells recover their FF. The results show that after 400°C post forming gas annealing for 25min, the over-fired cells improve their FF. On the other hand, both of the optimally-fired and the under-fired cells did not show similar
منابع مشابه
Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics
Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are ...
متن کاملSimple Photovoltaic Device Based on Multiwall Carbon Nanotube/Silicon Heterojunction
Multiwall carbon nanotubes (MWCNTs) are grown via chemical vapour deposition method directly on a stainless steel substrate. Raman spectroscopy and transmission electron microscopy are the techniques chosen to characterize the structure of the synthesized carbon nanotubes: few structural defects are detected. After their removal from the stainless steel substrate, the as-grown MWCNTs are then a...
متن کاملSimple Photovoltaic Device Based on Multiwall Carbon Nanotube/Silicon Heterojunction
Multiwall carbon nanotubes (MWCNTs) are grown via chemical vapour deposition method directly on a stainless steel substrate. Raman spectroscopy and transmission electron microscopy are the techniques chosen to characterize the structure of the synthesized carbon nanotubes: few structural defects are detected. After their removal from the stainless steel substrate, the as-grown MWCNTs are then a...
متن کاملStudy the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy
Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...
متن کاملAluminum–Titanium Alloy Back Contact Reducing Production Cost of Silicon Thin-Film Solar Cells
In this study, metal films are fabricated by using an in-line reactive direct current magnetron sputtering system. The aluminum–titanium (AlTi) back contacts are prepared by changing the pressure from 10 mTorr to 25 mTorr. The optical, electrical and structural properties of the metal back contacts are investigated. The solar cells with the AlTi had lower contact resistance than those with the ...
متن کامل